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w The prospects of using thin films and film flows of a magnetizable liquid in chem- 
ical-engineering heat- and mass-transfer devices necessitate an investigation of their sta- 
bility in various magnetic fields, especially since the investigations of this problem which 
have been made so far on liquids of infinite depth have shown a specific magnetic-instabillty 
mechanism of the free surface and broad possibilities of cor~trolling the surface by a mag- 
netic field [1-5]. A fundamental role in the equations derived is played by the minimum 
phase velocity of surface capillary-gravitational waves ~ = 2 (r -- p 2 ) ~ u / ( p :  + P2), which 
determines the stability limit, and the corresponding wave number km= r ~ Pa)g/~, which 
determines the wavelength of the surface perturbations after the loss of stability (p~ and 
p2 are the densities of the adjoining liquids; ~ is the surface tension between them; and g 
is the acceleration due to gravity). 

For thin layers of liquid the stability conditions undergo serious changes if only be- 
cause the phase velocity of the capillary-gravitational waves becomes different and the finite 
thickness of the layer of magnetizable liquid profoundly affects the distribution Of magnetic- 
field perturbations inside and outside the layer. The problem is also directly related to 
the problem of the effect of the magnetic properties of the media adjacent to the layer of 
liquid on its stability. 

w We consider the problem of the stability of a layer of magnetizable liquid when 
there is a tangential velocity discontinuity on its free surface. The geometry of the prob- 
lem is shown in Fig. i. A stationary layer of magnetizable liquid 1 of thickness h is bounded 
below (y =--h) by a plane solid surface 3, and above (y = 0) by a stream of another liquid 2 
moving along the free surface with a velocity uo. The whole system is in the vertical gravi- 
tational field g and a uniform magnetic field Ho which has the components Hox, Hoy, and Hoz 
in the solid at infinity. The physical characteristics of the media and the unknown quanti- 
ties in them have subscripts corresponding to the numbers of the media. 

The liquids under consideration are assumed incompressible, inviscid, and electrically 
nonconducting, and all three media are assumed to obey the linear-magnetization law M = X H, 
where M is the magnetic moment per unit volume of the material; X is its magnetic suscepti- 
bility; and H is the magnetic-field intensity. 

Under the above assumptions the motion of the magnetizable liquid is describedby the 
equations of ferrohydrodynamics [1-5] 

p[Ov/Ot +(VV)V] = - -VP + Pg + ~oMVH, ( 2 . 1 )  

div v = 0, rot H = 0, div B = 0, B = ~ o ( 1  + ~ ) H  = ~H, 

where v is the velocity; t is the time; p is the pressure; ~o and ~ are the magnetic perme- 
abilities of free space and the medium; and B is the magnetic induction. 

At all interfaces the tangential component of the magnetic-field intensity and the normal 
component of the magnetic induction must be continuous 

n • [Hi - - H i ]  = 0, n.(B~--B~) : 0, ( 2 . 2 )  

where n is a unit vector normal to the surface of separation 

n = {--qOflOx, q, --qOF/Oz}, q =_- [i + (Of/axp + (Of/a~ ~ ] -v~, 

and  y = F ( x ,  z)  i s  t h e  e q u a t i o n  o f  
e q u a l  a t  t h e  i n t e r f a c e  b e t w e e n  t h e  

Pl -- P7 -- 

( 2 . 3 )  

this surface. In addition, the normal stresses must be 
liquids 

i Po [(Min) ~ -- (Min) ~] + ~ ( R F '  -I- R F t ) ,  ( 2 . 4 )  2 
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on the solid boundary (y = --h) the normal component of the velocity must vanish (Vzy = 0), 
and on the free surface (y = 0) 

OF~at + v~v F = v~y, OF~at + v~vF = v~,  ( 2 . 5 )  

whe re  R~ and R= a r e  t h e  p r i n c i p a l  r a d i i  o f  c u r v a t u r e  o f  t h e  s u r f a c e .  Excep t  f o r  t h e  b o u n d a r y  
c o n d i t i o n s  on t h e  s o l i d  s u r f a c e  t h e  s t a t e m e n t  o f  t h e  p r o b l e m  i s  t h e  same as  i n  [ 1 - 3 ] .  

w The p r o b l e m  i s  s o l v e d  i n  t h e  l i n e a r  a p p r o x i m a t i o n .  P e r t u r b a t i o n s  o f  t h e  q u a n t i t i e s  
b e i n g  s o u g h t  a r e  d e n o t e d  b y  p r i m e s  and e q u i l i b r i u m  v a l u e s  by  a s u b s c r i p t  0. 

From ( 2 . 1 )  t h e  e q u a t i o n s  f o r  t h e  p o t e n t i a l s  o f  t he  p e r t u r b a t i o n s  o f  t h e  v e l o c i t y  v ~ = 
--V ~ a n d  t h e  m a g n e t i c - f i e l d  i n t e n s i t y  I t '  = V~ a r e  

0~ 
pUo ~ - -  ,%M o 

]:[oH', 
P' = - -  PgY' + P T (  + "~zo 

A~ = 0; A~ = 0 

For perturbations which are periodic in the (x0z) plane the last two equations have the 
general solutions 

r _-- (D_e-a~ + D+e~u)ei(~,-~ o, (3. i) 

q) = (c_e-~ + c+e~)e~(~'-~'),  k = [k~ , 0, k z ] 

(k i s  t h e  wave number;  ~ i s  t h e  f r e q u e n c y ;  r -- [x ,  y ,  z ] ) ,  wh ich  by  t a k i n g  a c c o u n t  o f  t h e  
n e c e s s a r y  f a l l - o f f  a t  i n f i n i t y  and t h e  b o u n d a r y  c o n d i t i o n s  on t h e  s o l i d  s u r f a c e  (y = --h) g i v e  
f o r  e a c h  o f  t h e  med ia  

% = D~ch k (y  + h)e~(k~-~), % = D~e-~e~(~-~)) ,  

r = cae-aa [chk(y + h) + (~J~z)sh k(y  + h)]e i ( k r - ~ )  , 

~D~ -~ c=e -ay e i ( k r - e t )  , ( I)  a -- caehY ei(kr-a~=) , 

F = Ae =(='-==), Ho,. = Ho~,  Hoz = Hozz, ( l  -F xa)Hou = ( i  + z,)Ho~z. 

In the linear approximation the boundary conditions (2.2)-(2.5) on the free surface of separ- 
ation F take the form 

O~ O~ " + Ci + Z~) Cl + X~) Ho~ ~ = O, 

0r 0(I)~ (i + Xs) (Z2 - -  X1) Hog 
Oz Oz + ( l+Xl)(IWx=) 

0, 

H 0 ~  --F + H0~-gf + = 0, (3.2) 

Hoxi = Ho~2, Howl ~-- Ho~2, 

(l  + X0 H 0 ~  = ( i  + X~) H 0 ~ ;  

0 ~I 0% 0% 
- -  (Pl - -  P~) gF + Pl ~ -  - -  P~ ~ -  - -  p~u0 - ~ -  + 

( O~ F O'F ~ + ~oHo x ( Zl 0r 0r 

"-~ ~toHoz ~1 ~ - -  ~.2 0$ ) ~t0 (l -p X1) (i q- Y,~) HOg X~ (i -~- X1) O(1)~Oy 

0r ] = 0; ( 3 . 3 )  

OF O~pl OF OF o~p~ 
0--7- = Oy ' Or @ u~ = - -  --~-y " ( 3 . 4 )  

We substitute the solutions (3.1) into the boundary conditions (3.2)-(3.4) and assume that 
the amplitude of the surface perturbations is small in comparison with their wavelength, which 
enables us to replace the boundary conditions on the surface F by the boundary conditions on 
the plane surface y = 0 after performing all the differentiation operations. This gives the 
dispersion equation for surface waves in the form 

(Pz - -  P2) g + ~k2 P l ~  P~ ( ~ -  kxu~ + 
kth kh k 

~_ (~  - -  pl) ~ (kilo) '~ l ~- (~3/~1) th kh 
~2 k . 1 + ~t3/~t ~ -~- (~tl/~t 2 -F- ~3/~1) th kh 
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P3 ~ (P,, - -  Ph) '~ H02vk p~/p~, + th kh 
p,,i~22 t +t~3/~  + (Pl/P'~ + !aa/P.1) th/d~ = 0, 

from which the phase velocity of the wave v = m/k is 

{(p~ -- p~) g + a~ 
u = p~Ithkh +p~ 

p~p,u 2 cos~ ~ 1~3 (P'~__..~ P,,)~ H2ou 
- -  (p*lth kh + p~)~ th kh ~V,~ (pJth kh + p~) )< ( 3 . 5 )  

1 ~ + (~/Ih) th kh COBS (~ _ ff)}l/~ 
X (p,/th kh + ps) t + ~ / ~  + ( ~ / ~  + ~3/~,) th kh 

w h e r e  ~ i s  t h e  a n g l e  b e t w e e n  t h e  v e c t o r s  k a n d  u o ;  a n d  ~ i s  t h e  a n g l e  b e t w e e n  t h e  t a n g e n t i a l  
c o m p o n e n t  o f  t h e  m a g n e t i c - f i e l d  i n t e n s i t y  l t o r  = [Hox , O, Hoz ] a n d  u o .  

The change in sign of the radical from + to -- in the expression for the phase velocity 
indicates the Onset of instability of the free surface, The remainder of the present article 
is devoted to an analysis of Eq. (3.5) from this point of view. 

w First let us discuss some of the features of the surface instability on an infinite 
layer (kh >> i) of a magnetizable liquid which were not noted in the papers cited above. If 
there is no discontinuity in the tangential velocity at the surface (uo = 0), the instability 
condition has the form 

0!~,-2 ~)____~ ~t__[ I 1 ~  - -  (~' - -  t~)~ Ho2~ cos s 0 > (p~ - -  P~) ~' + ~k~ 

(e = ~ -- o is the angle between the vectors k and HOT), from which it follows that for 8 =z/2 
instability begins at the same values of the normal component of the field as for BaT = O. 
Thus, in this situation the tangential magnetic field does not affect the stability of the 
free surface of the liquid, but does change its form significantly after the onset of in- 
stability. Instead of a structure which is periodic in two directions (cell), if there is 
no tangential field [i] the structure on the surface of the liquid will be periodic only in 
the direction perpendicular to the tangential component of the field (ridges with their axes 
parallel to the field). 

Some peculiarities occur also in the effect of the tangential magnetic field on the 
stability of the tangential velocity discontinuity. For Hoy = 0 the condition for its sta- 
bility is 

PiP2 ~ ~ (P'~ - -  ~)~ H~'c (PJ - -  P2) g + czk2 u~ c o s  ~ ~ COB 2 ( ~  - -  ~)  > ( 4 . 1 )  
Pl -~" P~ Pl + P'2 k ' 

from which it follows that when the tangential magnetic field is perpendicular to the flow 
velocity (a = ~/2) it does not affect the stability of the discontinuity and its maximum 
stabilizing effect occurs when it is parallel to uo. For ~/2 > ~ > 0 the critical velocity 
uo, lies in the range 

2 V (p~ - P-4 g~ < ~ u l  < 2 Vi,o~ - ps) gd-+ (~'- -,~I!2 H L  

From (4.1) it also follows that for g = 0, a = 0, or P: = p~ and Hot ~ uo, the tangential 
velocity discontinuity is absolutely unstable with respect to perturbations which propagate 
perpendicular to the field (~ -- ~ = ~/2) and have long wavelengths (k § 0) for g = 0 or pl = 
p2 and have short wavelengths (k § ~) for ~ = 0. In these cases 

• t v -- P~ + P2 

Only in a field parallel to the flow velocity (o = 0) is it possible to have a stable dis- 
continuity under the condition [3] 

uo<= H ~ .  
P~+P~ " ~ 1 §  
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Let us consider the effect of the magnetic properties of the bounding media and the 
finite thickness of the liquid layer on its stability. If there is no tangential velocity 
discontinuity (uo = 0), it follows from (3.5) that the most dangerous perturbations are those 
with a wave vector perpendicular to the tangential component of the field (~ -- ~ = 7/2) with 
respect to which the instability condition of the layer has the form 

H ~ y ~  ~3(~2--~1) ~ ~ 3 / ~ l + t h k h  - k " 

I t  i s  c o n v e n i e n t  t o  m i n i m i z e  t h e  r i g h t - h a n d  s i d e  o f  t h i s  c o n d i t i o n  w i t h  r e s p e c t  t o  t h e  d i m e n -  
s i o n l e s s  r a t i o  o f  k t o  t h e  c r i t i c a l  w a v e  n u m b e r  f o r  a n  i n f i n i t e  l a y e r  / ( 9 1  --  O a ) g / a .  

I n t r o d u c i n g  S = k / / ( 0 1  - -  P a ) g / a  a n d  t h e  d i m e n s i o n l e s s  number  

(~1 �9 ~2)~z~2 2}#(pi- -  p~)ga' 

w h i c h  d e t e r m i n e s  t h e  o n s e t  o f  i n s t a b i l i t y ,  we o b t a i n  t h e  i n s t a b i l i t y  c o n d i t i o n  ( 4 . 2 )  i n  t h e  
form 

i + S ~ t + a3e + (al~ + a31) thSS 
G >  2S ( l + a ~ ) ( a 3 1  + t h 6 S )  ' ( 4 . 3 )  

where aik = ~i/~k; and ~ = h/(pl -- P2)g/a is the dimensionless thickness of the layer. 

The critical values of the parameter G are determined by the minimum of the right-hand 
side of (4.3) with respect to S and correspond in the present case to a stationary character 
of the instability (v = 0). For an infinite layer (~ >> i) G, = 1 and S, = i. In (4.3) the 
critical values of G, are determined by both the dimensionless thickness of the layer ~ and 
the relative magnetic characteristics elk of the media bounding the layer. 

For 6S << 1 in the zero approximation it follows from (4.3) that 

G, l - i - ~ 3  i + ~/~3 S ,  = t.  ( 4 . 4 )  

The condition 6S << I in this case is transformed into ~ << i, i.e., h << /a/(px -- 0~)g. 

Analysis of Eq. (4.4) gives the following results: G, > 1 for ~1 > ~; G, < i for ~x < 
~,. This shows that the presence of a solid boundary mediumwith a magnetic permeability 
larger than that of the liquid decreases the stability of the layer, and in the opposite case 
the stability of the layer is increased. 

The dependence of G, on the thickness of the layer ~ calculated by Eq. (4.3) is shown 
in Fig. 2 for two cases of different media bounding the layer of magnetizable liquid. In the 
first case (curve i) ~sl ffi I000, ~,~ ffi 2, and ~s~ = 2000, which corresponds to an infinitely 
large magnetic permeability of the solid (medium 3) bounding the layer, and a nonmagnetic 
liquid (medium 2) over the layer for a magnetic permeability of the layer ~ = 2~o; in the 
second case (curve 2) a~ ffi 0.5, ~i~ = 2, and at= = i, which corresponds, for example, to a 
layer of magnetizable liquid with ~i = 2~o bounded by nonmagnetic media. In the first case 
G, decreases with decreasing ~ , while in the second case it increases to values determined 
by Eq. (4.4). In both cases G, is practically unity for ~ > I. 

The critical values of the wave number in both cases vary less rapidly with ~ than with 
G,. In the first case they are decreased (0.8 g S, < i), in the second case they are in- 
creased (i < S, ~ 1.2), and in the limiting cases (~ < 0.i and 6 > i) they are practically i. 

68 



It follows from (4.4) that significant stabilization of a layer of magnetizable liquid 
can be achieved by bounding it above with a magnetizable liquid having a magnetic permeability 
much larger than that of the solid. In this case if p~ : p= >> p3, G, ~ ~a/B~; if ~= >> P3 
and ~2 >> Pl, G, ~ ~i/~3. 

Let us now consider the stabilizing effect of a magnetic field tangential to the surface 
(Hoy = O) on the stability of the layer when there is a tangential velocity discontinuity 
(Uo # 0). This stabilizing effect is maximum when the tangential field is parallel to the 
flow velocity (o = 0). In this case the stability has a wave character and the instability 
condition has the form 

U2o :>  (Pl --  Pt) g + r (Pl -[- P, th kh) (1 ~ (P'I -- Its) ~H2k 
k PlP~ • ~2 [(P~ - -  P,) g +  ~k21" ( 4 . 5 )  

] .-[- asx th kh } 
i -~ aSS -~ (a12 -~- a31 ) th kh " 

The critical values of 2 Uo, are determined by the minimum of the right-hand side of Eq. (4.5) 
with respect to k 

for kh >> i, k, = J(Pl -- P~)g/~, 

U02 2 ( P l - [ - P , ) V ( p l _ ' [ ~ 2 ) g ~ [ l +  (~t1--~')zII2~ ] 
= PlP~ p,, (t ~ Z  p2} g = ; ( 4 . 6 )  

for kh << i, k, -- /(pz--pc)g/a, 

The stabilizing action of the tangential magnetic field is expressed by the second term 
in the square bracket of Eqs. (4.6) and (4.7), from which it follows that in the two limiting 
cases of thick and thin layers of magnetizable liquid the critical wave length is the same. 
Bounding the layer by a solid with a magnetic permeability larger than that of the liquid 
(~3 > ~i) decreases the stabilizing effect of the tangential magnetic field. For ~: > ~3 it 
is increased. 

Thus, generalizing the results of the problem considered, it can be concluded that a 
bounding solid with a magnetic permeability larger than that of the magnetizable liquid 
exerts a destabilizing effect on the stability of the liquid layer; on the other hand a bound- 
ing solid with a ~ smaller than that of the liquid stabilizes the layer. 

In conclusion we note that while it is possible to speak of the instability of the free 
surface of a thick layer of magnetizable liquid, these concepts are inadmissible for a thin 
layer since experiment shows that an unstable layer at once breaks up into separate conical 
peaks whose dimensions, number, and spatial periodicity depend on the magnetic-field intensity. 
As the field intensity is increased each peak separates into two smaller ones. 
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