INSTABILITY OF A STATIONARY THIN LAYER OF A MAGNETIZABLE LIQUID

V. G. Bashtovoi UDC 538.4+538.114

§1. The prospects of using thin films and film flows of a magnetizable liquid in chem~
ical-engineering heat- and mass-transfer devices necessitate an investigation of their sta-
bility in various magnetic fields, especially since the investigations of this problem which
have been made so far on liquids of infinite depth have shown a specific magnetic-instability
mechanism of the free surface and broad possibilities of congrolling the surface by a mag~
netic field [1-5]. A fundamental role in the equations derived is played by the minimum
phase velocity of surface capillary-gravitational waves u; = 2V(p, — p2)ga/(p, + pz), which
determines the stability limit, and the corresponding wave number kyp = Y(p, — pa)g/e, which
determines the wavelength of the surface perturbations after the loss of stability (p; and
p2 are the densities of the adjoining liquids; o is the surface tension between them; and g
is the acceleration due to gravity).

For thin layers of liquid the stability conditions undergo seriocus changes if only be-
cause the phase velocity of the capillary-gravitational waves becomes different and the finite
thickness of the layer of magnetizable liquid profoundly affects the distribution of magnetic—
field perturbations inside and outside the layer. The problem is also directly related to
the problem of the effect of the magnetic properties of the media adjacent to the layer of
liquid on its stability.

§2. We consider the problem of the stability of a layer of magnetizable liquid when
there is a tangential velocity discontinuity on its free surface. The geometry of the prob-
lem is shown in Fig. 1. A stationary layer of magnetizable liquid 1 of thickness h is bounded
below (y = —h) by a plane solid surface 3, and above (y = 0) by a stream of another liquid 2
moving along the free surface with a velocity ue. The whole system is in the vertical gravi-
tational field g and a uniform magnetic field Ho which has the components Hox, Hoy, and Hez
in the solid at infinity. The physical characteristics of the media and the unknown quanti-
ties in them have subscripts corresponding to the numbers of the media.

The liquids under consideration are assumed incompressible, inviscid, and electrically
nonconducting, and all three media are assumed to obey the linear-magnetization law M = yH,
where M is the magnetic moment per unit volume of the material; x is its magnetic suscepti-
bility; and H is the magnetic-field intensity.

Under the above assumptions the motion of the magnetizable liquid is described by the
equations of ferrohydrodynamics [1-5]

plaviat +(vy)vl = —yp + pg + pMyH,
divv =0, ot H =0, divB =0, B = p,(1 + y)H = uH,

{2.1)

where v is the velocity; t is the time; p is the pressure; 1o and p are the magnetic perme-~
abilities of free space and the medium; and B is the magnetic induction.

At all interfaces the tangential component of the magnetic-field intensity and the normal
component of the magnetic induction must be continuous

n X [H; —H;]=0, n-(B;—B;) = 0, (2.2)
where n is a unit vector normal to the surface of separation
n = {—qdF/dz, g, —qdF/dz}, q = [1 + (0F/0x)* - (0F/32)*]1-V2, (2.3)

and y = F(x, z) is the equation of this surface. 1In addition, the normal stresses must be
equal at the interface between the liquids

pi—p;= -— % o [(Myn)2 — (Mym)?] . (Ry' -+ By'), (2.4)
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on the solid boundary (y = —h) the normal component of the velocity must vanish (v = 0),
and on the free surface (y = 0)

OF [0t + v,y F = vy, 0F/0t + vy F = vy, (2.5)

where R; and R, are the principal radii of curvature of the surface. Except for the boundary
conditions on the solid surface the statement of the problem is the same as in [1-3].

§3. The problem is solved in the linear approximation. Perturbations of the quantities
being sought are denoted by primes and equilibrium values by a subscript O.

From (2.1) the equations for the potentials of the perturbations. of the velocity v' =
—V @and the magnetic-field intensity H' = V¢ are

HH/
= —pgy + o2 o +puo — Mo

A(p=0,A(D=O.

For perturbations which are periodic in the (x0z) plane the last two equations have the
general solutions

(P —— (D__e-ky _I,. D+eky)e‘i(kl'—ﬂ) t),
D = (c_e~hv - ¢ erv)eitr—ot) k = [k, 0, £,]

(3.1)

(k is the wave number; w is the frequency; r = [x, y, z]), which by taking account of the
necessary fall-off at infinity and the boundary conditions on the solid surface (y = —h) give
for each of the media

Q; = chh k(y + k)ei(kr—mi), @, = Dze-kyei(kr—mt))’
@, = cye~*" [chk(y + k) + (us/py)sh k(y + 7)Jeitkr—on),
(I)2 o cge—hv ei(kr—mt), CDS = csehy ei(kf—mt),

F = Agikr—od) H,, = Haxh Hy, = 0zls @+ Xs)Hoy =1+ Xl)Hoyr

In the linear approximation the boundary conditions (2.2)-(2.5) on the free surface of separ-

ation F take the form
80, 8D, |, (1473 (%2 — %1) 9F =0

2 w ' (At dFz)  Wor
90 00, | Ut la—y) g 9 _
0v 5, —

R P AN A
How3f + Ho Of + 10 220 LF 1 S0 o, (3.2)
Hygy = Hoxpy Hoot = Hozs,
(1 4 %1) Hoyr = (1 + %o) Hoyos
— (o1 — P EF + 01 G2 — 0, F — pu, 20
o2 g::)ﬂomx(xl—a,—l-xz%p
+ Mol o (x1 a—f}— e %q-}) — -a—ﬁl;l—) IIOU[Xz(l + %) .- aq)‘
(1) 6%1_0’ (3.3
wom g o

We substitute the solutions (3.1) into the boundary conditions (3.2)-(3.4) and assume that

the amplitude of the surface perturbations is small in comparison with their wavelength, which
enables us to replace the boundary conditions on the surface F by the boundary conditions on
the plane surface y = 0 after performing all the differentiation operations. This gives the

dispersion equation for surface waves in the form
p,0? Oy (G)--k uo)

(P —p2) 8 +ak®— ATV R %
+ (e —py)? (kH,)? 1+ (ny/n) thkh .
293 B - pg/iy o (/pe + pafpa) th ik
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B (g — )2 k pg/py -+ th kh — 0
um% W Flg/ty 5~ (R1/ly + M3/py) th kR !

from which the phase velocity of the wave v = w/k is

Oyltg COS P { Py — P,) & +- ak?

U R T p, | k(o /th AR T py)
_ ppgufcosty 2o, 1 %
{0,/ 0 Kk - po)Z th Kk Pi2 Oy {5 ANk + pg) (3.5)
Balpty + thkh By = 1) pro
O T Ty oy TR Ty T Y Y M 0% X
1 1 {(us/py) th kh 2p — G /2
X TR R T By T Falfia T (ha/a T 1a/p) T 05" (¥ )} '

where ¥ is the angle between the vectors k and ue; and 6 is the angle between the tangential
component of the magnetic-field intensity H,t = [Hyx, 0, Hyz] and uo.

The change in sign of the radical from + to — in the expression for the phase velocity
indicates the onset of instability of -the free surface. The remainder of the present article
is devoted to an analysis of Eq. (3.5) from this point of wview.

84. First let us discuss some of the features of the surface instability on an infinite
layer (kh >> 1) of a magnetizable liquid which were not noted in the papers cited above. 1If
there is no discontinuity in the tangential velocity at the surface (up = 0), the instability
condition has the form

{0 — 1g)® Jrz - (g — M) H? 2 (p1 — 0,) & + ak?
T T TR TR e K

(6 = ¥ — o is the angle between the vectors k and H,;), from which it follows that for 8 =7/2
instability begins at the same values of the normal component of the field as for H,; = 0.
Thus, in this situation the tangential magnetic field does not affect the stability of the
free surface of the liquid, but does change its form significantly after the onset of in-
stability. 1Instead of a structure which is periodic in two directions (cell), if there is

no tangential field [1] the structure on the surface of the liquid will be periodic only im
the direction perpendicular to the tangential component of the field (ridges with their axes
parallel to the field).

Some peculiarities occur also in the effect of the tangential magnetic field on the
stability of the tangential velocity discontinuity. For Hoy = O the condition for its sta-
bility is

(b — pg)? H3

£102 T 02 fab Py —05) & + ak?
Byt pg cos® ( o) > k

p1 -+ ps

ujcos2yP — , (4.1)
from which it follows that when the tangential magnetic field is perpendicular to the flow
velocity (o = w/2) it does not affect the stability of the discontinuity and its maximum
stabilizing effect occurs when it is parallel to ug. For #/2 > o > 0 the eritical velocity

uo, lies in the range

2V (o — pr)ga << pfip_g

PO — — 2
ug* < 2V(91 — Ps) 8o -+ MH%T,

P2 Byt

From (4.1) it also follows that for g = 0, a = 0, or p; = p; and H,¢ + ug, the tangential
velocity discontinuity is absolutely unstable with respect to perturbations which propagate
perpendicular to the field (y — o = 7/2) and have long wavelengths (k ~ 0) for g = 0 or p, =
pz and have short wavelengths (k - «) for a = 0. In these cases

__ Pyugcos P N e
v = o Lps {1 =+ 3VP1/P2J'

Only in a field parallel to the flow velocity (¢ = 0) is it possible to have a stable dis-
continuity under the condition [3]

P18z 2 . (B —Up)? 412
el T N LAY 7 £ 2
Pr+Pe 1< [ T i
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Let us consider the effect of the magnetic properties of the bounding media and the
finite thickness of the liquid layer on its stability. If there is no tangential velocity
discontinuity (ue = 0), it follows from (3.5) that the most dangerous perturbations are those
with a wave vector perpendicular to the tangential component of the field (¢ — o = n/2) with
respect to which the instability condition of the layer has the form -

Bfd b /g o (/g e/ th B (01— py) £+ 22 %.2)
B (Mg — p)? ta/py -+ th kh k .

It is convenient to minimize the right-hand side of this condition with respect to the dimen-
sionless ratio of k to the critical wave number for an infinite layer v(p, — pa)g/a.

Introducing S = k/V(p:1 — p2)g/o and the dimensionless number
S (pa— ) HE,
(M1 + 12) Wile 2 ¥ (pr — p,) €2

Hi,>

G

which determines the onset of instability, we obtain the instability condition (4.2) in the
form

1482 1+ oy, -+ (25, F @gy) th8S

> o e (4.3)
where O = ui/uk; and § = h¥(p. — p2)g/o is the dimensionless thickness of the layer.

The critical values of the parameter G are determined by the minimum of the right-hand
side of (4.3) with respect to S and correspond in the present case to a stationary character
of the instability (v = 0). For an infinite layer (§ >> 1) G, = 1 and S, = 1. In (4.3) the
critical values of G, are determined by both the dimensionless thickness of the layer § and
‘the relative magnetic characteristics SR of the media bounding the layer.

For 8S << 1 in the zero approximation it follows from (4.3) that

o Adas 14 ps/ug _
G*P—1+°‘21~1+P2/H1’S*_1' (4.4)

The condition 6S << 1 in this case is transformed into 6 << 1, i.e., h << va/(p; — pa)g.

Analysis of Eq. (4.4) gives the following results: G > 1 for wy > us; Gy, < 1 for u; <
ps. This shows that the presence of a solid boundary medium with a magnetic permeability
larger than that of the liquid decreases the stability of the layer, and in the opposite case
the stability of the layer is increased.

The dependence of G, on the thickness of the layer 8§ calculated by Eq. (4.3) is shown
in Fig. 2 for two cases of different media bounding the layer of magnetizable liquid. 1In the
first case (curve 1) as; = 1000, 0,2 = 2, and asz = 2000, which corresponds to an infinitely
large magnetic permeability of the solid (medium 3) bounding the layer, and a nonmagnetic
liquid (medium 2) over the layer for a magnetic permeability of the layer u: = 2po; in the
second case (curve 2) 0s; = 0.5, 0,2 = 2, and a3z = 1, which corresponds, for example, to a
layer of magnetizable liquid with u: = 2uo bounded by nonmagnetic media. In the first case
Gx decreases with decreasing § , while in the second case it increases to values determined
by Eq. (4.4). 1In both cases G, is practically unity for § > 1.

The critical values of the wave number in both cases vary less rapidly with § than with
G,. In the first case they are decreased (0.8 s S, < 1), in the second case they are in-
creased (1 < Sy S 1.2), and in the limiting cases (8§ < 0.1 and § > 1) they are practically 1.

68



It follows from (4.4) that significant stabilization of a layer of magnetizable liquid
can be achieved by bounding it above with a magnetizable liquid having a magnetic permeability
much larger than that of the solid. In this case if u; z p. >> us, G, ~ ualua: 1f us >> ug
and pz >> i, Gy ~ Ha/us.

Let us now consider the stabilizing effect of a magnetic field tangential to the surface
(Hoy = 0) on the stability of the layer when there is a tangential velocity discontinuity
(uo # 0). This stabilizing effect is maximum when the tangential field is parallel to the
flow velocity (o = 0). 1In this case the stability has a wave character and the instability
condition has the form

(e 92) -+ ak? (p; +p, thikh) [ N (Mg — po)2HE K

P10 Pl —po g T al X (4.5)
y 1 ay thkh
14 Ggq (212 + g} thkk }.

The critical values of ug* are determined by the minimum of the right-hand side of Eq. (4.5)
with respect to k

for kh >> 1, k, = Y(p1 — pa)g/a,
— pg)2HE
ug'_ 2(py + Po) ]/ p _'Pg)g [ ) 0t ‘]; (4.6)

P10 By (14 ag5) Vipr —pa) g
for kh << 1, k, = Y(p:1 — p2)g/a,
9 2 — 1 (ma — pg)2HEZ, Mg 1y ] ’
Hor = V pa) 8 { " us () Ve —pg) x BetBs | 4.7)

The stabilizing action of the tangential magnetic field is expressed by the second term
in the square bracket of Eqs. {(4.6) and (4.7), from which it follows that in the two limiting
cases of thick and thin layers of magnetizable liquid the critical wave length is the same.
Bounding the layer by a solid with a magnetic permeability larger than that of the liquid
(s > uy) decreases the stabilizing effect of the tangential magnetic field. TFor p; > ps; it
is increased.

Thus, generalizing the results of the problem considered, it can be concluded that a
bounding solid with a magnetic permeability larger than that of the magnetizable liquid
exerts a destabilizing effect on the stability of the liquid layer; on the other hand a bound-
ing solid with a u smaller than that of the liquid stabilizes the layer.

In conclusion we note that while it is possible to speak of the instability of the free
surface of a thick layer of magnetizable liquid, these concepts are inadmissible for a thin
layer since experiment shows that an unstable layer at once breaks up into separate conical
peaks whose dimensions, number, and spatial periodicity depend on the magnetic-field intensity.
As the field intensity is increased each peak separates into two smaller ones.
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